ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 8 ΙΟΥΝΙΟΥ 2023

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΘΕΜΑ Α

Για τις προτάσεις **Α1** έως και **Α4** να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή επιλογή.

- **Α1**. Στο προπίνιο $\overset{1}{C}H_3 \overset{2}{C} \equiv \overset{3}{C}H$, τα άτομα του άνθρακα 1, 2, 3 έχουν υβριδικά τροχιακά, αντίστοιχα
 - α . sp^3 , sp^2 , sp^2 .
 - β . sp², sp, sp².
 - γ . sp³, sp, sp.
 - δ . sp², sp², sp³.

Μονάδες 5

- **Α2.** Ο μέγιστος αριθμός ηλεκτρονίων με κβαντικούς αριθμούς n=4 , $\ell=2$, $m_\ell=-1$ σε άτομο που βρίσκεται σε θεμελιώδη κατάσταση είναι
 - α. 7.
 - **β.** 10.
 - **y.** 14.
 - δ. 2.

Μονάδες 5

Α3. Το νιτρυλοβρωμίδιο, NO_2Br , διασπάται σύμφωνα με την αντίδραση:

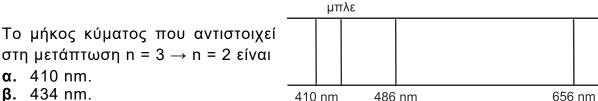
$$2NO_2Br(g) \rightarrow 2NO_2(g) + Br_2(g)$$
.

Ένας προτεινόμενος μηχανισμός είναι:

$$NO_2Br(g) \rightarrow NO_2(g) + Br(g)$$
 αργή αντίδραση

$$NO_2Br(g) + Br(g) \rightarrow NO_2(g) + Br_2(g)$$
 γρήγορη αντίδραση

Ο νόμος της ταχύτητας που προβλέπεται από αυτόν τον μηχανισμό είναι


$$\alpha$$
. $U = k[NO_2Br][Br]$.

- $\beta. \quad U = k[NO_2Br].$
- $v. \quad v = k[NO_2][Br_2].$
- δ. $U = k[NO_2Br]^2$.

Μονάδες 5

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Α4. Δίνεται το γραμμικό φάσμα εκπομπής του ατόμου του υδρογόνου στην περιοχή του ορατού, που προκύπτει από τις παρακάτω αποδιεγέρσεις ηλεκτρονίων: $n = 6 \rightarrow n = 2, n = 5 \rightarrow n = 2, n = 4 \rightarrow n = 2 \text{ } \kappa\alpha\text{ } n = 3 \rightarrow n = 2.$

ιώδες

434 nm

πράσινο

- **ß.** 434 nm.
- **γ.** 486 nm.
- **δ.** 656 nm.

Μονάδες 5

KÓKKIVO

- **Α5.** Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν η πρόταση είναι λανθασμένη.
 - 1. Ο καταλύτης αυξάνει την ταχύτητα μιας αντίδρασης καθώς δημιουργεί μια νέα πορεία για την πραγματοποίηση της αντίδρασης που έχει μικρότερη ενέργεια ενεργοποίησης.
 - 2. Υδατικό διάλυμα NaCl συγκέντρωσης 0,4 Μ είναι ισοτονικό με υδατικό διάλυμα γλυκόζης συγκέντρωσης 0,4 Μ στην ίδια θερμοκρασία.
 - 3. Με προσθήκη στερεού NaF σε διάλυμα HF, χωρίς μεταβολή του όγκου και της θερμοκρασίας, το pH του διαλύματος αυξάνεται.
 - **4.** Το χρώμα της όξινης μορφής $H\Delta$ ενός πρωτολυτικού δείκτη επικρατεί του χρώματος της βασικής μορφής Δ^- του δείκτη όταν το $pH > pKa_{HA} - 1$.
 - 5. Με την επίδραση αντιδραστηρίου Grignard σε μεθανάλη (HCHO) και υδρόλυση του προϊόντος παράγεται δευτεροταγής αλκοόλη.

Μονάδες 5

ОЕМА В

Β1. α. Να κατατάξετε κατά σειρά αυξανόμενης ατομικής ακτίνας τα στοιχεία 7Ν, 15Ρ, 33Ας που βρίσκονται στη θεμελιώδη κατάσταση, αιτιολογώντας την απάντησή σας.

(Μονάδες 3)

β. Να συγκρίνετε την ισχύ των βάσεων NH₃, AsH₃, PH₃, CH₃NH₂ σε υδατικά διαλύματα, ίδιας θερμοκρασίας, αν γνωρίζετε ότι η σειρά αύξησης του +Ι επαγωγικού φαινομένου είναι:

$$H - < CH_3 - < C_2H_5 -$$

(Μονάδα 1)

Να αιτιολογήσετε την απάντησή σας.

(Μονάδες 3)

Μονάδες 7

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Β2. α. Να αντιστοιχίσετε τις χημικές ουσίες της **στήλης Α** με τα σημεία ζέσεως της **στήλης Β** σε πίεση P = 1 atm.

ΣΤΗΛΗ Α	ΣΤΗΛΗ Β	
CH₃OH	−253 °C	
H_2	65 °C	
CH ₄	−162 °C	

Να αιτιολογήσετε την απάντησή σας.

(Μονάδες 3)

Δίνονται οι σχετικές ατομικές μάζες: $A_r(H) = 1$, $A_r(C) = 12$, $A_r(O) = 16$.

β. Έστω η χημική ισορροπία

$$CH_3OH(g) + H_2(g) \rightleftharpoons CH_4(g) + H_2O(\ell),$$

η οποία πραγματοποιείται σε σταθερή θερμοκρασία 80 °C.

Να εξηγήσετε πώς θα μεταβληθεί (θα αυξηθεί/θα μειωθεί/θα παραμείνει σταθερή) η ποσότητα του H_2 αν αυξήσουμε τον όγκο του δοχείου.

(Μονάδες 3) **Μονάδες 6**

Β3. α. Διαθέτουμε 2 υδατικά διαλύματα Δ1 και Δ2 εκ των οποίων το ένα περιέχει ισχυρό μονοπρωτικό οξύ ΗΑ και το άλλο ασθενές μονοπρωτικό οξύ ΗΒ. Με πεχάμετρο μετράμε το αρχικό pH κάθε διαλύματος και διαπιστώνουμε ότι η τιμή του pH είναι η ίδια και στα δύο διαλύματα και ίση με 2.

Αραιώνουμε 10 mL από το κάθε διάλυμα μέχρι τελικού όγκου 100 mL και ξαναμετράμε τα pH. Οι τιμές καταγράφονται στον παρακάτω πίνακα.

Να βρείτε ποιο διάλυμα περιέχει το ισχυρό οξύ και ποιο το ασθενές, αξιοποιώντας τις μετρήσεις του pH πριν και μετά την αραίωση.

(Μονάδα 1)

Να αιτιολογήσετε την απάντησή σας.

(Μονάδες 2)

β. Στη συνέχεια ίσοι όγκοι των διαλυμάτων Δ1 και Δ2 ογκομετρούνται με το ίδιο πρότυπο υδατικό διάλυμα NaOH συγκέντρωσης *c* M, καταναλώνοντας μέχρι το τελικό σημείο όγκους V₁ και V₂ αντίστοιχα από το πρότυπο διάλυμα.

Πίνακας

	Διάλυμα Δ1	Διάλυμα Δ2
αρχικό pΗ	2	2
pH αραιωμένων διαλυμάτων	2,5	3
mL διαλύματος NaOH που καταναλώθηκε ως το τελικό σημείο	V ₁ mL	V ₂ mL

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Για τους όγκους V1 και V2 ισχύει:

i) $V_1 > V_2$

ii) $V_1 = V_2$

iii) V₁ < V₂

Να επιλέξετε την ορθή απάντηση.

(Μονάδα 1)

Να αιτιολογήσετε την απάντησή σας.

(Μονάδες 2)

Όλα τα διαλύματα βρίσκονται σε θερμοκρασία θ = 25 °C και τα δεδομένα του προβλήματος επιτρέπουν τις γνωστές προσεγγίσεις.

Μονάδες 6

Β4. Έστω η παρακάτω αμφίδρομη αντίδραση, η οποία λαμβάνει χώρα σε ένα στάδιο και προς τις δύο κατευθύνσεις, είναι δηλαδή απλή αντίδραση και προς τις δύο κατευθύνσεις:

$$2A(g) + B(g) \xrightarrow{k_1, Ea_1} A_2B(g), \Delta H_1^0 > 0.$$

- α. Εάν η προς τα δεξιά κατεύθυνση υποδεικνύεται με τον δείκτη 1 και η προς τα αριστερά κατεύθυνση υποδεικνύεται με τον δείκτη 2, να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στην ένδειξη που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη.
 - i. $\Delta H_1^0 = -\Delta H_2^0$, όπου ΔH_1^0 , ΔH_2^0 οι αντίστοιχες πρότυπες ενθαλπίες των αντιδράσεων.
 - ii. $Ea_2 = Ea_1 + \Delta H_1^0$, όπου Ea_1 , Ea_2 οι αντίστοιχες ενέργειες ενεργοποίησης των αντιδράσεων.
 - iii. $K_c = k_1 \cdot k_2$, όπου K_c η σταθερά της χημικής ισορροπίας και k_1 , k_2 οι σταθερές ταχύτητας των αντιδράσεων.

(Μονάδες 3)

β. Να αιτιολογήσετε τις απαντήσεις σας.

(μονάδες 3)

Μονάδες 6

ΘΕΜΑ Γ

Γ1. α. Η ουρία (H_2NCONH_2) αντιδρά με νερό (H_2O) σε κατάλληλες συνθήκες και πραγματοποιείται η αντίδραση που παριστάνεται με τη θερμοχημική εξίσωση (1):

$$H_2NCONH_2(aq) + H_2O(\ell) \rightarrow 2NH_3(g) + CO_2(g), \Delta H^0$$
 (1)

Να υπολογίσετε το ποσό της θερμότητας που εκλύεται ή απορροφάται από την αντίδραση 6 g ουρίας σύμφωνα με τη θερμοχημική εξίσωση (1).

(Μονάδες 5)

Δίνονται οι πρότυπες ενθαλπίες σχηματισμού:

ΤΕΛΟΣ 4ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

$$\Delta H_{\rm f}^0({\rm NH_3}(g)) = -46 \; {\rm kJ \cdot mol^{-1}}$$

$$\Delta H_{\rm f}^0({\rm CO}_2(g)) = -394 \ {\rm kJ \cdot mol^{-1}}$$

$$\Delta H_f^0(H_2NCONH_2(aq)) = -320 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta H_{\rm f}^0({\rm H_2O}(\ell)) = -286 \ {\rm kJ \cdot mol^{-1}}$$

και οι σχετικές ατομικές μάζες: $A_r(H) = 1$, $A_r(C) = 12$, $A_r(N) = 14$, $A_r(O) = 16$.

β. Η αμμωνία (NH_3) που παράγεται διαβιβάζεται σε δοχείο όγκου 0,5 L και αντιδρά με περίσσεια οξειδίου του χαλκού (CuO), οπότε πραγματοποιείται η αντίδραση που παριστάνεται με την εξίσωση (2):

$$2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3Cu(s) + 3H_2O(\ell)$$
 (2)

Σε χρόνο t=10 s έχει διασπαστεί το 20% της ποσότητας αμμωνίας (NH_3) . Να προσδιορίσετε τη μέση ταχύτητα της αντίδρασης και τη μέση ταχύτητα κατανάλωσης της αμμωνίας (NH_3) στο χρονικό διάστημα των 10 s.

(Μονάδες 4) **Μονάδες 9**

Γ2. Σε δοχείο όγκου V και σε θερμοκρασία θ °C πραγματοποιείται η αντίδραση που περιγράφεται από τη χημική εξίσωση (3):

$$FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$$
 (3)

Στη θέση της χημικής ισορροπίας υπάρχουν 0,25 mol CO, 1,25 mol CO₂, 0,25 mol FeO και 1,25 mol Fe.

Να υπολογίσετε την ποσότητα του CO_2 σε mol, που πρέπει να απομακρυνθεί από το δοχείο της αντίδρασης στην ίδια θερμοκρασία, ώστε η ποσότητα του CO

στη νέα θέση ισορροπίας να είναι το $\frac{1}{5}$ της ποσότητας του CO στην αρχική θέση της χημικής ισορροπίας.

Μονάδες 6

- Γ3. Σε τρία δοχεία περιέχονται τα παρακάτω μίγματα.
 - 1) Αιθανικό οξύ (CH3COOH) και μεθανάλη (HCHO)
 - 2) Μεθανικό οξύ (ΗСΟΟΗ) και προπανόνη (CH₃COCH₃)
 - 3) Αιθανόλη (CH₃CH₂OH) και προπανάλη (CH₃CH₂CHO)

Κάθε δοχείο περιέχει ένα από τα παραπάνω μίγματα, διαφορετικό το καθένα. Τα συστατικά στο κάθε μίγμα δεν αντιδρούν μεταξύ τους.

Να προσδιορίσετε τη διαδικασία με την οποία θα ταυτοποιήσετε το περιεχόμενο του κάθε δοχείου, όταν έχετε στη διάθεσή σας:

ΤΕΛΟΣ 5ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

- Υδατικό διάλυμα όξινου ανθρακικού νατρίου (NaHCO₃) (Διάλυμα Δ_A)
- Υδατικό διάλυμα ιωδίου (I_2) σε υδροξείδιο του νατρίου (NaOH) (Διάλυμα Δ_B) (Μονάδες 6)

Να γράψετε τις αντιδράσεις που πραγματοποιούνται στο μίγμα (2), όταν προστεθεί διάλυμα Δ_{A} και όταν προστεθεί διάλυμα Δ_{B} .

(Μονάδες 4).

Μονάδες 10

ΘΕΜΑ Δ

Δ1. Τα 3,7 g κορεσμένης μονοσθενούς και πρωτοταγούς αλκοόλης A ($C_vH_{2v+1}CH_2OH$) αντιδρούν πλήρως με υδατικό διάλυμα $KMnO_4$ παρουσία H_2SO_4 και παράγεται οξύ B.

Το οξύ B απομονώνεται και διαβιβάζεται σε 120 mL υδατικού διαλύματος NaOH συγκέντρωσης 0,5 M έτσι ώστε να προκύψει διάλυμα Υ1. Η ποσότητα του NaOH στο Υ1 που περισσεύει μετά την αντίδραση με το οξύ B απαιτεί για την πλήρη εξουδετέρωσή της 50 mL υδατικού διαλύματος HCI συγκέντρωσης 0,2 M.

Για την ένωση Α ισχύει:

$$A \xrightarrow[-H_2O]{\pi. H_2SO_4, 170^{\circ} C} \Gamma \xrightarrow[H^+]{+H_2O} \Delta_{\kappa\acute{\nu}\rho\iotao \pi\rho\sigma\acute{\nu}\acute{\nu}}$$

ενώ για την ένωση Δ ισχύει ότι δεν οξειδώνεται με υδατικό διάλυμα KMnO_4 παρουσία $\mathsf{H}_2\mathsf{SO}_4$ χωρίς διάσπαση της ανθρακικής της αλυσίδας.

- α) Να βρείτε τον μοριακό τύπο της αλκοόλης A (μονάδες 5).
- **β)** Να γράψετε τους συντακτικούς τύπους των οργανικών ενώσεων A , Γ και Δ (μονάδες 3).

Μονάδες 8

Δ2. Τα 3 g προπανόλης (C_3H_7OH) οξειδώνονται πλήρως με 70 mL υδατικού διαλύματος $K_2Cr_2O_7$ συγκέντρωσης $\frac{1}{3}$ M, παρουσία H_2SO_4 , και σχηματίζεται μίγμα αλδεΰδης και οξέος.

Να υπολογίσετε το ποσοστό μετατροπής της προπανόλης σε οξύ.

Μονάδες 6

Δ3. Υδατικό διάλυμα CH_3COOH συγκέντρωσης 0,1 M και όγκου 2 L αναμιγνύεται με υδατικό διάλυμα $Ca(OH)_2$ συγκέντρωσης 0,05 M και όγκου V οπότε προκύπτει ρυθμιστικό διάλυμα Y2 με pH = 5. Να υπολογίσετε τον όγκο V του διαλύματος $Ca(OH)_2$.

Μονάδες 6

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Δ4. Προσθέτουμε σε νερό 0,01 mol CH_3ONa ώστε να προκύψει υδατικό διάλυμα όγκου 100 mL (διάλυμα Y3).

Να υπολογίσετε το pH του διαλύματος Υ3.

Μονάδες 5

Δίνονται:

- $K_W = 10^{-14}$
- Για το CH₃COOH: *K_a* = 10⁻⁵
- οι σχετικές ατομικές μάζες: $A_r(H) = 1$, $A_r(C) = 12$, $A_r(O) = 16$.

Όλα τα διαλύματα βρίσκονται σε θερμοκρασία $\theta = 25$ °C και τα δεδομένα του προβλήματος επιτρέπουν τις γνωστές προσεγγίσεις.

ΟΔΗΓΙΕΣ (για τους εξεταζόμενους / τις εξεταζόμενες)

- 1. Στο εξώφυλλο να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας, να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- **3.** Να απαντήσετε **στο τετράδιό σας** σε όλα τα θέματα **μόνο** με μπλε ή **μόνο** με μαύρο στυλό με μελάνι που δεν σβήνει.
- **4.** Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- **5.** Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- **6.** Χρόνος δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ