<u>ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ</u> ΝΕΟ ΣΥΣΤΗΜΑ - ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΑΡΑΣΚΕΥΗ 26 ΙΟΥΝΙΟΥ 2020

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

ОЕМА А

Για τις προτάσεις **Α1** έως και **Α4** να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή επιλογή.

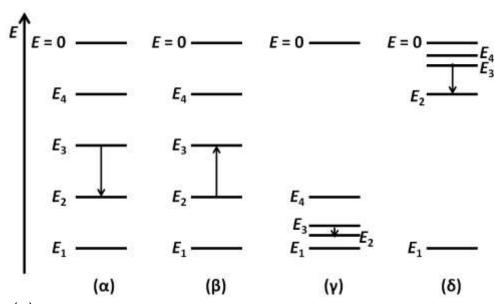
- **Α1.** Ποιο από τα παρακάτω υδατικά διαλύματα έχει μεγαλύτερο pH στην ίδια θερμοκρασία;
 - α. CH₃ONa 0,1M
 - **β.** CH₃COONa 0,1M
 - y. NH₃ 0,1M
 - **δ.** NaOH 0,01M

Μονάδες 5

Α2. Δίνονται οι αλκοόλες:

Ποια από τις παραπάνω ενώσεις αναμένεται να έχει μεγαλύτερο σημείο ζέσης (στην ίδια πίεση);

- α. H (I).
- **β.** H (II).
- v. H (III).
- **δ.** H (IV).


Μονάδες 5

<u>ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ</u> ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

- **Α3.** Δίνεται ένα μοριακό διάλυμα γλυκόζης 0,1Μ. Ποια από τις ακόλουθες προτάσεις είναι ορθή;
 - α. Η ωσμωτική πίεση του διαλύματος είναι ανεξάρτητη της θερμοκρασίας.
 - **β.** Το διάλυμα είναι ισοτονικό με διάλυμα $NaC\ell$ 0,1M.
 - **γ.** Δεν γίνεται να προσδιοριστεί το $M_{\rm r}$ της γλυκόζης με ωσμωμετρία.
 - **δ.** Αν το διάλυμα της γλυκόζης τεθεί σε συσκευή στην οποία διαχωρίζεται με ημιπερατή μεμβράνη από τον καθαρό διαλύτη, θα πρέπει να ασκηθεί εξωτερική πίεση σε αυτό, προκειμένου να μην παρατηρηθεί το φαινόμενο της ώσμωσης.

Μονάδες 5

Α4. Ποιο από τα ακόλουθα ενεργειακά διαγράμματα αναπαριστά την μετάπτωση από τη στάθμη n = 3 προς τη n = 2 στο ατομικό φάσμα του υδρογόνου;

- α. το (α).
- **β.** το (β).
- **γ.** το (γ).
- δ. το (δ).

Μονάδες 5

- **Α5.** Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση, τη λέξη **Σωστό**, αν η πρόταση είναι σωστή, ή τη λέξη **Λάθος**, αν η πρόταση είναι λανθασμένη.
 - 1. Οι εξώθερμες αντιδράσεις πραγματοποιούνται ταχύτερα από τις ενδόθερμες.
 - 2. Η υψηλή τιμή της σταθεράς ισορροπίας μιας αντίδρασης σημαίνει ότι αυτή πραγματοποιείται με μεγάλη ταχύτητα.
 - 3. Το ηλεκτρόνιο στο τροχιακό 1s του ατόμου του υδρογόνου βρίσκεται κατά μέσο όρο στην ίδια απόσταση από τον πυρήνα με το αντίστοιχο ηλεκτρόνιο στο άτομο του άνθρακα.
 - 4. Η διαδικασία μετατροπής του $H_2O(g)$ σε $H_2O(\ell)$ είναι εξώθερμη.
 - 5. Σε κάθε υδατικό διάλυμα και σε οποιαδήποτε θερμοκρασία ισχύει η σχέση: $[H_3O^+][OH^-] = 10^{-14}$.

Μονάδες 5

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

<u> ӨЕМА В</u>

- **B1.** Δίνονται τα στοιχεία $_{17}$ C ℓ και $_{53}$ I.
 - i) Να εξηγήσετε ποιο στοιχείο έχει μεγαλύτερη ηλεκτραρνητικότητα.

(μονάδες 3)

ii) Να συγκρίνετε ως προς την ισχύ τις βάσεις I^- και $\mathsf{C}\ell^-$.

(μονάδες 3)

iii) Δίνονται τα ασθενή οξέα $HC\ell O$ ($H-O-C\ell$) και HIO (H-O-I). Να αιτιολογήσετε ποιο από τα υδατικά διαλύματα ίδιας συγκέντρωσης $HC\ell O$ και HIO θα έχει μικρότερο pH στην ίδια θερμοκρασία.

(μονάδες 2) **Μονάδες 8**

B2. Το σημαντικότερο ρυθμιστικό σύστημα του αίματος είναι το H_2CO_3 / HCO_3^- .

i) Να γράψετε την εξίσωση της ισορροπίας μεταξύ των δύο συζυγών μορφών του ανωτέρω ρυθμιστικού.

(μονάδα 1)

ii) Αν το pH του αίματος έχει τιμή 7,4 και η p K_{a1} του H_2CO_3 είναι 6,4, να υπολογίσετε τον λόγο των συγκεντρώσεων του H_2CO_3 προς το HCO_3^- .

(μονάδες 3)

Μονάδες 4

Β3. Σε υδατικό διάλυμα νιτρικού νικελίου $Ni(NO_3)_2$ προστίθεται διάλυμα αμμωνίας και αποκαθίσταται η ακόλουθη ισορροπία:

$$[Ni(H_2O)_6]^{2+}(aq) + 6 NH_3(aq) \rightleftharpoons [Ni(NH_3)_6]^{2+}(aq) + 6 H_2O(\ell)$$
 (1)

i) Σε ένα δοκιμαστικό σωλήνα που περιέχει το παραπάνω διάλυμα προστίθεται στερεό $NH_4C\ell$ (s) χωρίς μεταβολή του όγκου. Να εξηγήσετε προς τα πού θα μετατοπιστεί η ισορροπία (1).

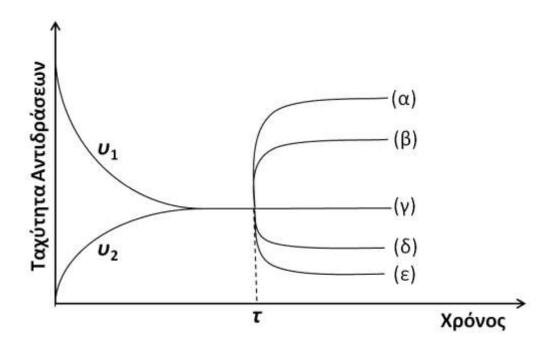
(μονάδες 3)

Όταν θερμαίνουμε το διάλυμα, εκλύεται αέριο το οποίο διαβιβάζεται σε άχρωμο διάλυμα φαινολοφθαλεΐνης, το οποίο μετατρέπει σε ερυθρό.

ii) Να εξηγήσετε προς τα πού μετατοπίζεται η ισορροπία **(1)** κατά την έκλυση του αερίου.

Δίνεται ότι η φαινολοφθαλεΐνη είναι πρωτολυτικός δείκτης (p K_a = 9,1), η όξινη μορφή της είναι άχρωμη και η βασική μορφή της είναι ερυθρή.

(μονάδες 4)


Μονάδες 7

Β4. Σε ένα κλειστό δοχείο αποκαθίσταται η ακόλουθη ισορροπία:

$$H_2(g) + I_2(g) \xrightarrow{\upsilon_1} 2 HI(g)$$
 (2)

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

όπου v_1 , v_2 οι ταχύτητες των δύο αντιθέτων πορειών. Στο ακόλουθο διάγραμμα δίνονται οι μεταβολές των v_1 , v_2 με το χρόνο. Τη χρονική στιγμή \mathbf{r} προστίθεται στο σύστημα κατάλληλος καταλύτης, οπότε η μεταβολή της v_1 ακολουθεί την καμπύλη (β).

i) Να εξηγήσετε ποια από τις καμπύλες (α), (β), (γ), (δ) και (ε) θα ακολουθήσει η v_2 .

(μονάδες 2)

Αν στο ίδιο σύστημα τη χρονική στιγμή \mathbf{r} , αντί για την προσθήκη καταλύτη μεταβληθεί ο όγκος του δοχείου, τότε η v_1 ακολουθεί την καμπύλη (δ).

ii) Να εξηγήσετε ποια καμπύλη θα ακολουθήσει η v_2 .

(μονάδες 2)

iii) Να εξηγήσετε αν αυξήθηκε ή μειώθηκε ο όγκος του δοχείου.

(μονάδες 2)

Μονάδες 6

ΘЕМА Г

Το θειικό οξύ είναι ένα οξύ με μεγάλο βιομηχανικό και περιβαλλοντικό ενδιαφέρον, αφού συνδέεται με την όξινη βροχή. Η κύρια αιτία της δημιουργίας όξινης βροχής είναι η καύση των ορυκτών καυσίμων. Για παράδειγμα, οι γαιάνθρακες περιέχουν θειούχο σίδηρο (FeS₂), η καύση του οποίου παράγει SO₂.

Γ1. Από ένα κοίτασμα γαιανθράκων λαμβάνεται ποσότητα 20 kg, η οποία καίγεται και παράγεται SO₂ σύμφωνα με την αντίδραση:

$$4 \text{ FeS}_2(s) + 11O_2(g) \rightarrow 2 \text{ Fe}_2O_3(g) + 8 \text{ SO}_2(g)$$
 (1)

Το SO_2 που παράγεται, διοχετεύεται σε δοχείο σταθερού όγκου 48L μαζί με ισομοριακή ποσότητα O_2 . Στο δοχείο αποκαθίσταται ισορροπία με απόδοση 50% σύμφωνα με την αντίδραση:

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$
 (2)

Για τη σταθερά της ισορροπίας (2) ισχύει $K_C = 4$. Να υπολογίσετε:

i) Την ποσότητα (σε mol) κάθε αερίου στη θέση ισορροπίας.

(μονάδες 5)

ii) Την περιεκτικότητα % w/w σε FeS_2 του κοιτάσματος γαιάνθρακα. Δίνονται: A_r : Fe = 56, S = 32.

(μονάδες 2) **Μονάδες 7**

Το SO_2 εκτός από την καύση μπορεί να μετατραπεί σε SO_3 και με άλλες χημικές αντιδράσεις.

Γ2. Μια χημική αντίδραση μετατροπής του SO₂ σε SO₃ είναι η ακόλουθη:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$
 (3)

Σε δοχείο σταθερού όγκου V βρίσκεται σε ισορροπία μείγμα από 1 mol SO_2 , 1,5 mol NO_2 , 8 mol SO_3 και 3 mol NO.

i) Να υπολογίσετε την K_c της αντίδρασης (3).

(μονάδα 1)

Όταν στο μείγμα της ισορροπίας προσθέσουμε 0,5 mol SO_2 και 5 mol NO, απορροφώνται 10 kJ. Nα υπολογίσετε:

ii) Τη σύσταση του νέου μείγματος ισορροπίας.

(μονάδες 4)

iii) Τη ΔH της αντίδρασης (3).

(μονάδες 2)

Μονάδες 7

Γ3. Μια άλλη αντίδραση μετατροπής του SO₂ σε SO₃ είναι η:

$$SO_2(g) + O_3(g) \rightarrow SO_3(g) + O_2(g)$$
 (4)

Σε ένα πείραμα μελετήθηκε η ταχύτητα της αντίδρασης (4) και στον παρακάτω πίνακα δίνονται τα πειραματικά δεδομένα. Όλες οι αντιδράσεις πραγματοποιήθηκαν στην ίδια θερμοκρασία σε δοχείο όγκου 500 mL.

[SO ₂] _{αρχ.} / mol·L ⁻¹	$[O_3]_{\alpha\rho\chi}$ / mol·L ⁻¹	υ _{αρχ.} / mol·L ⁻¹ ·min ⁻¹
0,25	0,40	0,05
0,25	0,20	0,05
0,50	0,30	0,20

i) Να υπολογίσετε την τάξη της αντίδρασης για κάθε αντιδρών.

(μονάδες 2)

ii) Να υπολογίσετε τη σταθερά ταχύτητας *k*.

(μονάδες 2)

Στο τρίτο πείραμα για το χρονικό διάστημα 0 έως 2 min ο μέσος ρυθμός σχηματισμού του SO_3 υπολογίστηκε ίσος με 4 g/min.

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

iii) Να υπολογίσετε τη συγκέντρωση του O_3 στο τέλος των δύο λεπτών. Δίνονται: A_r : O = 16, S = 32.

(μονάδες 3)

Μονάδες 7

Γ4. Όταν το SO_3 ελευθερώνεται στην ατμόσφαιρα, μπορεί να μετατραπεί με την επίδραση του νερού σε H_2SO_4 . Μια ποσότητα SO_3 χρησιμοποιείται για την παρασκευή διαλύματος H_2SO_4 1 Μ. Στο διάλυμα του H_2SO_4 να ταξινομήσετε κατά αύξουσα σειρά, χωρίς υπολογισμούς, τις ποσότητες των: α) μορίων H_2SO_4 , β) ιόντων HSO_4^- , γ) ιόντων SO_4^{2-} και δ) ιόντων H_3O^+ .

(μονάδα 1)

Να αιτιολογήσετε πλήρως την απάντησή σας. (μονάδες 3) Για το θειικό οξύ δίνεται ότι είναι ασθενές στον δεύτερο ιοντισμό του.

Μονάδες 4

ΘΕΜΑ Δ

Όταν στον Παρνασσό ανακαλύφθηκαν μεγάλες ποσότητες βωξίτη, εγκαταστάθηκε στην περιοχή μία από τις μεγαλύτερες βιομηχανίες της Ελλάδος, αυτή της παραγωγής καθαρής αλουμίνας ($A\ell_2O_3$) και αλουμίνιου ($A\ell$). Η μεταλλουργία του αλουμινίου περιλαμβάνει δύο στάδια. Στο δεύτερο στάδιο γίνεται η παραγωγή του καθαρού αλουμινίου με ηλεκτρόλυση της καθαρής αλουμίνας παρουσία περίσσειας άνθρακα (γραφίτη) σύμφωνα με την αντίδραση:

$$2A\ell_2O_3(\ell) + 3C(s) \rightarrow 4A\ell(\ell) + 3CO_2(g)$$
 (1)

Δ1. Δίνονται οι αντιδράσεις:

$$A\ell(s) \to A\ell(\ell), \ \Delta H_2 = 11 \text{ kJ}$$
 (2),
 $A\ell_2O_3(s) \to A\ell_2O_3(\ell), \ \Delta H_3 = 109 \text{ kJ}$ (3),
 $2A\ell(s) + \frac{3}{2}O_2(g) \to A\ell_2O_3(s), \ \Delta H_4 = -1676 \text{ kJ}$ (4),
 $C(s) + O_2(g) \to CO_2(g), \ \Delta H_5 = -394 \text{ kJ}$ (5).

Να υπολογιστεί η ενθαλπία της αντίδρασης (1) (μονάδες 4) και να εξηγήσετε αν η παραγωγή του καθαρού αλουμινίου απορροφά ή εκλύει ενέργεια (μονάδα 1).

Μονάδες 5

Δ2. Η απόδοση της αντίδρασης **(1)** είναι 98%, διότι ποσότητα από το παραγόμενο αλουμίνιο καταναλώνεται σύμφωνα με την παρακάτω αντίδραση:

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

$$2A\ell(\ell) + 3CO_2(g) \rightarrow A\ell_2O_3(\ell) + 3CO(g)$$
 (6).

Παράλληλα λαμβάνει χώρα η ακόλουθη αντίδραση:

$$C(s) + CO_2(g) \rightarrow 2CO(g)$$
 (7).

Να υπολογίσετε την ποσότητα σε L (STP) του CO που εκλύθηκε από την κατεργασία 1.020 kg $A\ell_2O_3$ μέσω της αντίδρασης (1), δεδομένου ότι ο άνθρακας που καταναλώθηκε στην αντίδραση (7) ήταν 0,6 kg.

Μονάδες 5

Δ3. 4.480L CO μετρημένα σε STP μετατρέπονται σε κατάλληλες συνθήκες σε CH_3COOH σύμφωνα με τη συνολική αντίδραση:

$$2CO(g) + 2H_2(g) \rightarrow CH_3COOH(\ell) + παραπροϊόντα (8).$$

Τα παραπροϊόντα της (8) είναι υγρά και δεν αλληλεπιδρούν μεταξύ τους ούτε με το CH₃COOH ούτε με το NaOH. Από το τελικό μείγμα των προϊόντων λαμβάνεται δείγμα 1g, το οποίο διαλύεται πλήρως σε 25 mL νερό, χωρίς μεταβολή του όγκου, και ογκομετρείται με διάλυμα NaOH 1 M. Αν απαιτήθηκαν 15 mL διαλύματος NaOH, τότε να υπολογιστεί:

i) Το ποσοστό του CH₃COOH στα προϊόντα της αντίδρασης **(8)**.

(μονάδες 4)

ii) Η συνολική ποσότητα του CH₃COOH που παρήχθη σε kg από την αντίδραση (8).

(μονάδες 4) Μονάδες 8

- **Δ4.** Μια ποσότητα από το οξικό οξύ που παρήχθη χρησιμοποιείται για την παρασκευή υδατικού διαλύματος CH_3COOH 0,1M. Αυτό το διάλυμα αναμειγνύεται με διάλυμα NaOH 0,2M και παρασκευάζεται ρυθμιστικό διάλυμα. Στο ρυθμιστικό διάλυμα προσθέτουμε δείκτη με $K_{\alpha,H\Delta} = 10^{-7}$. Ο λόγος των συγκεντρώσεων των μορίων του δείκτη προς την ιοντισμένη μορφή του είναι 100. Να υπολογίσετε:
 - i) Το pH του ρυθμιστικού διαλύματος.

(μονάδες 2)

ii) Την αναλογία όγκων με την οποία αναμείξαμε τα δύο διαλύματα.

(μονάδες 5)

Μονάδες 7

Δίνεται ότι:

- Όλα τα διαλύματα βρίσκονται σε θερμοκρασία θ=25°C.
- $K_{\alpha, \text{CH3COOH}} = 10^{-5}$
- Τα δεδομένα του προβλήματος επιτρέπουν τις γνωστές προσεγγίσεις.
- A_r : H = 1, C = 12, O = 16, $A\ell$ = 27.

<u>ΑΡΧΗ 8ΗΣ ΣΕΛΙΔΑΣ</u> ΝΕΟ ΣΥΣΤΗΜΑ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- 1. Στο εξώφυλλο να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας, να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- **3.** Να απαντήσετε **στο τετράδιό σας** σε όλα τα θέματα **μόνο** με μπλε ή **μόνο** με μαύρο στυλό με μελάνι που δεν σβήνει.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- **6.** Χρόνος δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ