ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019

EEETAZOMENO MAOHMA:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΌ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΘΕΜΑ Α

- Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1 έως 5 και δίπλα τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν η πρόταση είναι λανθασμένη.
 - 1. Ο δείκτης σε έναν πίνακα έχει υποχρεωτικά ακέραια τιμή.
 - 2. Η έκφραση Χ ΚΑΙ (ΟΧΙ Χ) είναι πάντα Αληθής για κάθε τιμή της λογικής μεταβλητής Χ.
 - 3. Η έκφραση "ΚΑΛΗΜΕΡΑ" > "ΚΑΛΗΣΠΕΡΑ" έχει την τιμή Αληθής.
 - **4.** Σκοπός της ιεραρχικής σχεδίασης είναι η διάσπαση του προβλήματος σε μια σειρά από απλούστερα υποπροβλήματα.
 - 5. Στη ΓΛΩΣΣΑ έχουμε απεριόριστη εμβέλεια μεταβλητών.

Μονάδες 10

Α2. Να αναφέρετε και να περιγράψετε τέσσερεις από τις βασικές λειτουργίες επί των δομών δεδομένων που μπορούν να χρησιμοποιηθούν στους πίνακες.

Μονάδες 8

Α3. Δίνεται το παρακάτω τμήμα προγράμματος:

 $X \leftarrow K$ APXH_EΠΑΝΑΛΗΨΗΣ $X \leftarrow X + 2$ ΓΡΑΨΕ XMEXPIS_OTOY X >= M

Τι θα εμφανίσει για κάθε μία από τις παρακάτω περιπτώσεις:

- α) K = 4, M = 9
- β) K = 5, M = 0
- y) K = -1, M = 3

Μονάδες 6

- **Α4.** Να σχεδιάσετε τα διαγράμματα ροής για τις παρακάτω εντολές επανάληψης:
 - α) ΟΣΟ συνθήκη ΕΠΑΝΑΛΑΒΕ εντολές ΤΕΛΟΣ ΕΠΑΝΑΛΗΨΗΣ

εντολές ΜΕΧΡΙΣ_Ο

β)

ΜΕΧΡΙΣ_ΟΤΟΥ συνθήκη

ΑΡΧΗ ΕΠΑΝΑΛΗΨΗΣ

(μονάδες 3) **Μονάδες 6**

(μονάδες 3)

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Α5. Δίνεται ο παρακάτω αλγόριθμος πολλαπλασιασμού αλά ρωσικά δύο θετικών ακεραίων αριθμών Μ1 και Μ2 σε φυσική γλώσσα κατά βήματα:

```
Βήμα 1 Θέσε P=0

Βήμα 2 Αν M2>0, τότε πήγαινε στο Βήμα 3, αλλιώς πήγαινε στο Βήμα 7

Βήμα 3 Αν ο M2 είναι περιττός, τότε θέσε P=P+M1

Βήμα 4 Θέσε M1=M1*2

Βήμα 5 Θέσε M2=M2/2 (θεώρησε μόνο το ακέραιο μέρος)

Βήμα 6 Πήγαινε στο Βήμα 2

Βήμα 7 Τύπωσε τον P
```

Να γράψετε στο τετράδιό σας την κωδικοποίηση των παραπάνω βημάτων σε ΓΛΩΣΣΑ.

Μονάδες 10

ОЕМА В

Β1. Δίνεται ο παρακάτω αλγόριθμος ο οποίος ελέγχει αν το στοιχείο key βρίσκεται στον πίνακα table[n] τουλάχιστον τρείς (3) φορές και εμφανίζει τη θέση στην οποία βρίσκεται την τρίτη φορά.

```
Αλγόριθμος Β1
Δεδομένα // n, table, key //
done ← ψευδής
position \leftarrow 0
i ← 1
count ← ...(1)...
Όσο i <= ...(2)... και done = ...(3)... επανάλαβε
    Av table[ \dots(4)\dots ] = key \tau \acute{o} \tau \epsilon
        count ← ...(5)...
    Τέλος αν
    Av count = ...(6)... T \acute{o} T \epsilon
       done ← ...(7)...
        ...(8)... ← i
    αλλιώς
       i ← ...(9)...
    Τέλος_αν
Τέλος επανάληψης
Αν ...(10)... τότε
  Εμφάνισε "Το στοιχείο", key, "υπάρχει τουλάχιστον 3 φορές."
  Εμφάνισε "Για τρίτη φορά εμφανίζεται στη θέση ", position, "."
  Εμφάνισε "Το στοιχείο", key, "δεν υπάρχει τουλάχιστον 3 φορές."
Τέλος_αν
Τέλος Β1
```

Να γράψετε στο τετράδιό σας τους αριθμούς των κενών και δίπλα ό,τι χρειάζεται να συμπληρωθεί έτσι ώστε ο αλγόριθμος να λειτουργεί σωστά.

Μονάδες 10

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

B2. Δίνονται οι παρακάτω δηλώσεις υποπρογραμμάτων και των παραμέτρων τους:

ΣΥΝΑΡΤΗΣΗ Α(χ, ψ):ΠΡΑΓΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Β(χ, ψ, ζ)

ΜΕΤΑΒΛΗΤΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΑΚΕΡΑΙΕΣ: χ ΑΚΕΡΑΙΕΣ: ψ

XAPAKTHPEΣ: ψ [10] ΠΡΑΓΜΑΤΙΚΈΣ: χ , ζ

Επίσης δίνεται το τμήμα δηλώσεων κύριου προγράμματος:

ΜΕΤΑΒΛΗΤΕΣ

AKEPAIEΣ: κ, λ [10], μ ΠΡΑΓΜΑΤΙΚΕΣ: π, ρ [10], γ ΧΑΡΑΚΤΗΡΕΣ: θ [10], υ

Μεταξύ των εντολών του κύριου προγράμματος υπάρχουν οι παρακάτω πέντε εντολές κλήσης των υποπρογραμμάτων:

- 1. $\Pi \leftarrow A(\kappa, \upsilon)$
- 2. $KA\Lambda E\Sigma E A(\mu, \theta)$
- 3. KAΛEΣE B(π , μ)
- 4. $\upsilon \leftarrow A(\mu, \theta)$
- 5. $\kappa \leftarrow B(\pi, \mu, \rho[1])$

Καθεμιά από τις παραπάνω εντολές έχει ένα λάθος.

- α) Να γράψετε στο τετράδιό σας τον αριθμό (1 5) της καθεμιάς εντολής και δίπλα να περιγράψετε το λάθος. (μονάδες 5)
- β) Να γράψετε στο τετράδιό σας τον αριθμό (1 5) της καθεμιάς εντολής και δίπλα να γράψετε την εντολή σωστά χρησιμοποιώντας μόνο μεταβλητές που υπάρχουν στο τμήμα δηλώσεων του κύριου προγράμματος. (μονάδες 5)

Μονάδες 10

ОЕМАГ

Το Υπουργείο Παιδείας παρέχει μέσω του διαδικτύου μια συλλογή από εκπαιδευτικά βίντεο. Ο αριθμός των επισκέψεων που δέχεται κάθε ένα βίντεο καταγράφεται από ειδικό λογισμικό. Τα βίντεο διακρίνονται σε τρείς κατηγορίες ανάλογα με την επισκεψιμότητά τους, σύμφωνα με τον παρακάτω πίνακα:

ΚΑΤΗΓΟΡΙΕΣ ΕΠΙΣΚΕΨΙΜΟΤΗΤΑΣ	
Όνομα	Αριθμός Επισκέψεων
Χαμηλή	από 1 έως και 100
Μεσαία	από 101 έως και 1000
Υψηλή	πάνω από 1000

Τα βίντεο με μηδενικές επισκέψεις δεν κατατάσσονται σε καμία κατηγορία.

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Να αναπτύξετε πρόγραμμα το οποίο:

Γ1. Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων.

Μονάδες 2

Γ2. Να διαβάζει επαναληπτικά τον τίτλο κάθε βίντεο και τον αριθμό των επισκέψεων που δέχτηκε. Η εἰσοδος των δεδομένων να τερματίζεται, όταν ως τίτλος βίντεο δοθεί η λέξη «ΤΕΛΟΣ». (μονάδες 3) Να γίνεται έλεγχος εγκυρότητας ώστε ο αριθμός των επισκέψεων να μην είναι αρνητικός. (μονάδες 2)

Μονάδες 5

Γ3. Να βρίσκει και να εμφανίζει τον τίτλο του βίντεο με τον μεγαλύτερο αριθμό επισκέψεων. Να θεωρήσετε ότι είναι μοναδικό.

Μονάδες 4

- **Γ4.** Να υπολογίζει για καθεμία από τις τρεις κατηγορίες επισκεψιμότητας το πλήθος των βίντεο που καταχωρίστηκαν σε αυτή. Να εμφανίζει για κάθε κατηγορία:
 - το όνομά της και
 - το πλήθος των βίντεο που περιλαμβάνει.

Μονάδες 6

Γ5. Να βρίσκει και να εμφανίζει το όνομα της κατηγορίας επισκεψιμότητας στην οποία καταχωρίστηκαν τα περισσότερα βίντεο. Να θεωρήσετε ότι είναι μοναδική.

Μονάδες 3

Σημείωση

Το πλήθος των βίντεο δεν είναι γνωστό.

ΘΕΜΑ Δ

Στην 27^η Βαλκανιάδα Πληροφορικής που θα διεξαχθεί στην Αθήνα τον Σεπτέμβριο του 2019, συμμετέχουν 40 μαθητές. Κάθε μαθητής παίρνει έναν κωδικό από 1 έως και 40, ο οποίος αντιστοιχεί στη σειρά που δήλωσε συμμετοχή. Κάθε μαθητής καλείται να επιλύσει έξι προβλήματα. Για κάθε πρόβλημα αναπτύσσει τη λύση του σε μία γλώσσα προγραμματισμού και την υποβάλλει για βαθμολόγηση. Η λύση βαθμολογείται σε ακέραια κλίμακα από 0 έως 100.

Κατά τη διάρκεια του διαγωνισμού κάθε μαθητής και για κάθε πρόβλημα μπορεί να υποβάλλει τη λύση του όσες φορές θέλει.

Να αναπτύξετε πρόγραμμα σε ΓΛΩΣΣΑ το οποίο:

- Δ1. Να περιλαμβάνει κατάλληλο τμήμα δηλώσεων. Μονάδες 2
- Δ2. Να διαβάζει επαναληπτικά τα ονόματα των μαθητών και να τα καταχωρίζει στον Πίνακα ΟΝ[40]. (μονάδα 1) Επίσης, να αρχικοποιεί με την τιμή 0 όλα τα στοιχεία του Πίνακα ΒΑΘ[40,6], ο οποίος θα περιέχει τη βαθμολογία κάθε μαθητή για κάθε πρόβλημα. (μονάδες 2)

Μονάδες 3

Δ3. Κάθε φορά που μία λύση προβλήματος υποβάλλεται και βαθμολογείται, το πρόγραμμα να διαβάζει τον κωδικό του μαθητή (από 1 έως και 40),

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

τον αριθμό του προβλήματος (από 1 έως και 6) και τη βαθμολογία του (από 0 έως και 100). (μονάδα 1)

Η βαθμολογία να καταχωρίζεται στην αντίστοιχη θέση του Πίνακα **ΒΑΘ**[40,6] μόνο αν είναι μεγαλύτερη από τη βαθμολογία που είναι ήδη καταχωρισμένη. (μονάδες 2)

Για τον τερματισμό της εισαγωγής δεδομένων το πρόγραμμα να εμφανίζει το μήνυμα «Υπάρχει νέα λύση προβλήματος; NAI / OXI». Αν εισαχθεί η τιμή «ΟΧΙ», να τερματίζεται η εισαγωγή δεδομένων. (μονάδες 2)

Μονάδες 5

Δ4. Να υπολογίζει και να καταχωρίζει στον Πίνακα ΣΒ[40] τα αθροίσματα των βαθμολογιών κάθε μαθητή στα έξι προβλήματα. Για τον σκοπό αυτό να καλεί μόνο μια φορά το υποπρόγραμμα με όνομα ΥΣΒ. (μονάδα 1) Να αναπτύξετε το υποπρόγραμμα ΥΣΒ το οποίο να δέχεται ως είσοδο τον Πίνακα ΒΑΘ[40,6] και να επιστρέφει ως έξοδο συμπληρωμένο τον Πίνακα ΣΒ[40]. (μονάδες 4)

Μονάδες 5

Δ5. Να εμφανίζει τα ονόματα των μαθητών ταξινομημένων σύμφωνα με τη συνολική τους βαθμολογία σε φθίνουσα βαθμολογική σειρά. Σε περίπτωση μαθητών με την ίδια βαθμολογία, τα ονόματά τους να εμφανίζονται με αλφαβητική σειρά.

Μονάδες 5

Σημειώσεις

- α) Δεν απαιτούνται έλεγχοι εγκυρότητας τιμών.
- β) Να θεωρήσετε ότι θα δοθεί τουλάχιστον μια λύση προβλήματος από έναν μαθητή.

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε **στο τετράδιό σας** σε όλα τα θέματα **μόνο** με μπλε ή **μόνο** με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, **μόνο** αν το ζητάει η εκφώνηση, και **μόνο** για πίνακες, διαγράμματα κλπ.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 6. Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ