ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

Στις ερωτήσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει σωστά την ημιτελή πρόταση.

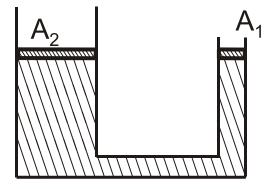
- Α1. Δύο σύγχρονες πηγές Π₁ και Π₂ δημιουργούν στην επιφάνεια υγρού αρμονικά κύματα ίδιου πλάτους Α και ίδιας συχνότητας f, τα οποία συμβάλλουν. Τα σημεία της επιφάνειας του υγρού στα οποία έχουν φτάσει και τα δύο κύματα
 - α) ταλαντώνονται με την ίδια συχνότητα και διαφορετικά πλάτη με τιμές που κυμαίνονται από 0 έως Α
 - β) ταλαντώνονται με την ίδια συχνότητα και διαφορετικά πλάτη με τιμές που κυμαίνονται από 0 έως 2Α
 - γ) ταλαντώνονται με διαφορετικές συχνότητες και διαφορετικά πλάτη
 - δ) ταλαντώνονται με διαφορετικές συχνότητες και ίδιο πλάτος.

Μονάδες 5

- Α2. Κατά μήκος δύο όμοιων ομογενών και ελαστικών χορδών (1) και (2) διαδίδονται δύο εγκάρσια αρμονικά κύματα με την ίδια ταχύτητα. Το κύμα στην χορδή (1) έχει διπλάσια συχνότητα και το μισό πλάτος από αυτό στη χορδή (2). Τότε
 - α) το μήκος κύματος στη χορδή (1) είναι ίσο με το μήκος κύματος στη χορδή (2)
 - β) το μήκος κύματος στη χορδή (1) είναι διπλάσιο από το μήκος κύματος στη χορδή (2)
 - γ) η μέγιστη ταχύτητα ταλάντωσης των σωματιδίων της χορδής (1)
 είναι ίση με τη μέγιστη ταχύτητα ταλάντωσης των σωματιδίων της χορδής (2)
 - δ) η μέγιστη επιτάχυνση της ταλάντωσης των σωματιδίων της χορδής
 (1) είναι μικρότερη από τη μέγιστη επιτάχυνση ταλάντωσης των σωματιδίων της χορδής (2).

Μονάδες 5

- Α3. Ένα σώμα εκτελεί φθίνουσα ταλάντωση με δύναμη αντίστασης στην κίνηση της μορφής F = -bu, όπου u η ταχύτητα ταλάντωσης του σώματος. Η σταθερά απόσβεσης b στο διεθνές σύστημα μονάδων μέτρησης (S.I.) μετριέται σε
 - α) kg/s
 - β) kg / s²
 - γ) kg·m/s
 - δ) kg \cdot m / s².


Α4. Ένας υδραυλικός ανυψωτήρας της μορφής του Σχήματος 1 έχει δύο

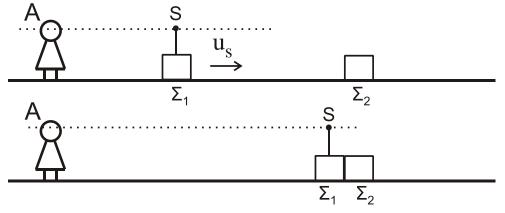
αβαρή έμβολα που μπορούν να κινούνται χωρίς τριβές και περιέχει ιδανικό ασυμπίεστο υγρό. Το μικρό έμβολο έχει εμβαδόν εγκάρσιας διατομής Α₁ και το μεγάλο έμβολο έχει εμβαδόν εγκάρσιας διατομής Α₂ = 3 Α₁.

Αρχικά τα έμβολα βρίσκονται ακίνητα στο ίδιο οριζόντιο επίπεδο. Ασκούμε δύναμη στο μικρό έμβολο και τη στιγμή που αυτό έχει κατέβει κατά d₁, το μεγάλο έμβολο έχει ανεβεί κατά d₂.

Για τις αποστάσεις d₁ και d₂ ισχύει ότι

- α) $d_1 = 1,5 d_2$
- $\beta) \quad d_1 = 2 \ d_2$
- $\gamma) \quad d_1 = 3 \ d_2$
- δ) $d_1 = 4 d_2$.

Σχήμα 1


Μονάδες 5

- A5. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη.
 - α) Μικρή σφαίρα μάζας m κινείται σε λείο οριζόντιο επίπεδο και σε διεύθυνση κάθετη σε κατακόρυφο τοίχο και συγκρούεται ελαστικά με αυτόν. Αν το μέτρο της ορμής της σφαίρας ακριβώς πριν την κρούση είναι ίσο με p, τότε το μέτρο της μεταβολής της ορμής της σφαίρας λόγω της κρούσης με τον τοίχο είναι ίσο με το μηδέν.
 - β) Από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων της ίδιας διεύθυνσης που γίνονται γύρω από το ίδιο σημείο με το ίδιο πλάτος και με συχνότητες που διαφέρουν πολύ λίγο μεταξύ τους, προκύπτει περιοδική κίνηση που παρουσιάζει διακροτήματα.
 - γ) Όταν ρέει ιδανικό ρευστό με σταθερή παροχή σε οριζόντιο κυλινδρικό σωλήνα μεταβλητής διατομής, στις περιοχές στις οποίες το εμβαδόν της εγκάρσιας διατομής αυξάνεται, η πίεση μειώνεται.
 - δ) Σε μια εξαναγκασμένη ταλάντωση το πλάτος της ταλάντωσης εξαρτάται από τη συχνότητα του διεγέρτη και τη σταθερά απόσβεσης b.
 - ε) Όταν σε ένα αρχικά ακίνητο και ελεύθερο στερεό σώμα ασκηθεί δύναμη που ο φορέας της διέρχεται από το κέντρο μάζας του στερεού, τότε το στερεό σώμα δεν περιστρέφεται.

Μονάδες 5

B1. Παρατηρητής Α είναι ακίνητος σε μικρή απόσταση από σώμα Σ₁ μάζας m που κινείται με ταχύτητα U_s = ^{U_H}/₂₀ (όπου U_H η ταχύτητα του ήχου στον ακίνητο αέρα) και απομακρύνεται απ' αυτόν. Ο παρατηρητής και η πηγή βρίσκονται στην ίδια οριζόντια διεύθυνση όπως φαίνεται στο σχήμα 2.

Σχήμα 2

Το σώμα Σ₁ φέρει πηγή που εκπέμπει ήχο συχνότητας f_s. Όσο η πηγή απομακρύνεται από τον παρατηρητή, αυτός αντιλαμβάνεται ήχο συχνότητας f₁. Κατά την κίνησή του το σώμα Σ₁ συγκρούεται πλαστικά με ίδιο σώμα Σ₂ που είναι ακίνητο. Κατά την κρούση, που είναι ακαριαία, η πηγή δεν καταστρέφεται και το συσσωμάτωμα συνεχίζει να κινείται προς την ίδια κατεύθυνση.

Ο παρατηρητής μετά την κρούση αντιλαμβάνεται ήχο συχνότητας f₂. Ο λόγος των συχνοτήτων f₁ και f₂ που ακούει ο παρατηρητής είναι ίσος με

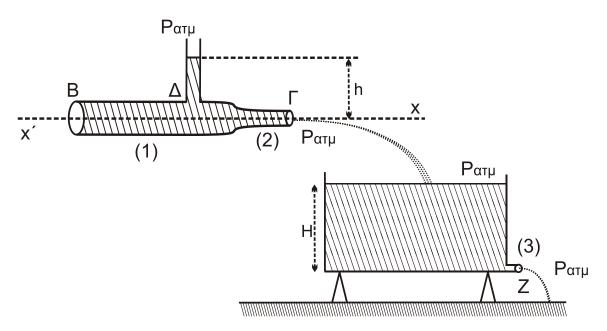
i.	39		41	iii.	38
	42	ii.	42		39

- α) Να επιλέξετε τη σωστή απάντηση.
- β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

Β2. Στον οριζόντιο κυλινδρικό σωλήνα ΒΓ μεταβλητής διατομής του Σχήματος 3, ρέει με σταθερή παροχή νερό, το οποίο θεωρείται ιδανικό ρευστό με φορά από το Β προς το Γ. Για τα εμβαδά των εγκαρσίων διατομών των περιοχών (1) και (2), αντίστοιχα, ισχύει Α₁ = 2A₂. Σε σημείο Δ της περιοχής (1) έχουμε προσαρμόσει ένα λεπτό κατακόρυφο σωλήνα, στον οποίο η ελεύθερη επιφάνεια του νερού βρίσκεται σε ύψος h από την οριζόντια διεύθυνση x'x.

Το νερό που εξέρχεται από το στόμιο Γ του σωλήνα χύνεται σε δοχείο μεγάλου όγκου που είναι στερεωμένο σε οριζόντιο έδαφος. Στη βάση του δοχείου στη


θέση (3) υπάρχει μικρή οπή Ζ με εμβαδόν διατομής $A_3 = \frac{A_2}{2}$. Λόγω της εξόδου

ΤΕΛΟΣ 3ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

Μονάδες 2

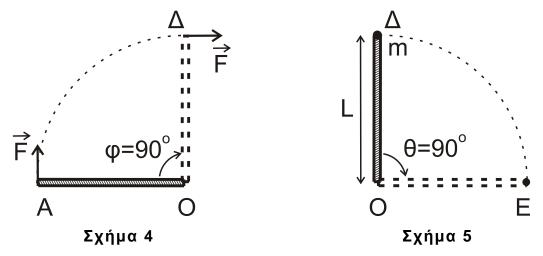
ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ – Γ΄ ΗΜΕΡΗΣΙΩΝ

του νερού από την οπή Ζ το δοχείο δεν μπορεί να γεμίσει και η ελεύθερη επιφάνεια του νερού σταθεροποιείται σε ύψος Η (Σχήμα 3).

Σχήμα 3

Ο λόγος του ύψους h του νερού στον κατακόρυφο σωλήνα προς το ύψος H του νερού στο δοχείο είναι ίσος με

i. $\frac{3}{4}$ ii. $\frac{3}{8}$ iii. $\frac{3}{16}$.


α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

B3. Λεπτή ισοπαχής ομογενής ράβδος μήκους L και μάζας Μ μπορεί να περιστρέφεται πάνω σε οριζόντιο επίπεδο χωρίς τριβές γύρω από κατακόρυφο άξονα που περνά από το άκρο της Ο και είναι κάθετος στο επίπεδο.

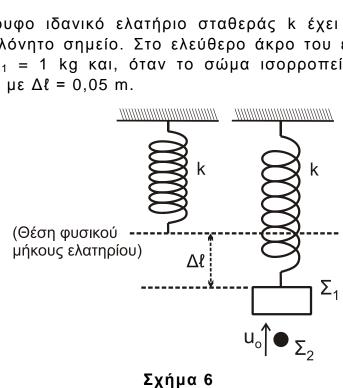
ΤΕΛΟΣ 4ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

Η αρχικά ακίνητη ράβδος στη θέση (ΟΑ), υπό την επίδραση δύναμης F σταθερού μέτρου, που ασκείται συνεχώς κάθετα στο άκρο της αρχίζει να κινείται (Σχήμα 4).

Όταν η ράβδος έχει διαγράψει γωνία φ = 90° και φτάσει στη θέση (ΟΔ), η δύναμη παύει ακαριαία να ασκείται και ταυτόχρονα συγκρούεται πλαστικά με ένα σώμα μικρών διαστάσεων μάζας m που ενσωματώνεται ακαριαία στο άκρο της Δ (Σχήμα 5).

Ο χρόνος Δt που θα χρειαστεί η ράβδος με το σώμα μάζας m για να διαγράψει τη γωνία $\theta = 90^{\circ}$ από την θέση (ΟΔ) έως τη θέση (ΟΕ) είναι ίσος με

i.
$$\frac{1}{6}$$
 s ii. $\frac{1}{3}$ s iii. $\frac{4}{3}$ s


Δίνονται:

- η ροπή αδράνειας της λεπτής ομογενούς ράβδου ως προς τον άξονα περιστροφής είναι ίση με $I_{(ράβδου)} = \frac{1}{3}ML^2$
- M = 3 kg, m = 1 kg, L = 1 m,F = 9π N
- Όπου εμφανίζεται το π, να μη γίνει αριθμητική αντικατάσταση.

α) Να επιλέξετε τη σωστή απάντηση.

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 2

Δεύτερο σώμα Σ₂ μάζας m₂ = 1 kg κινούμενο κατακόρυφα προς τα πάνω συγκρούεται πλαστικά με ταχύτητα μέτρου υο με το σώμα Σ1 (Σχήμα 6) Η

ΤΕΛΟΣ 5ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

Μονάδες 7

ΘΕΜΑ Γ

Ένα κατακόρυφο ιδανικό ελατήριο σταθεράς k έχει το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Στο ελεύθερο άκρο του ελατηρίου αναρτάται σώμα Σ1 μάζας m1 = 1 kg και, όταν το σώμα ισορροπεί, η επιμήκυνση του ελατηρίου είναι ίση με $\Delta l = 0.05$ m.

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

διάρκεια της κρούσης είναι αμελητέα και το συσσωμάτωμα, που προκύπτει από την κρούση, εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς της ταλάντωσης D = k και φτάνει μέχρι τη θέση στην οποία το ελατήριο έχει το φυσικό του μήκος.

Γ1. Να υπολογίσετε τη σταθερά k του ελατηρίου (μονάδες 2) και το πλάτος της ταλάντωσης που εκτελεί το συσσωμάτωμα (μονάδες 4).

Μονάδες 6

Γ2. Να υπολογίσετε την κινητική ενέργεια του σώματος Σ₂ πριν την κρούση.

Μονάδες 7

Γ3. Να υπολογίσετε το μέτρο της μεταβολής της ορμής του σώματος Σ₂ κατά την κρούση (μονάδες 4) και να προσδιορίσετε την κατεύθυνσή της (μονάδες 2).

Μονάδες 6

Γ4. Αν t₀ = 0 η χρονική στιγμή της κρούσης, να γράψετε τη σχέση που δίνει την απομάκρυνση του συσσωματώματος από την θέση ισορροπίας του σε συνάρτηση με τον χρόνο.

Μονάδες 6

Να θεωρήσετε :

- θετική κατεύθυνση την κατεύθυνση κίνησης του συσσωματώματος αμέσως μετά την κρούση
- ότι κατά την κρούση δεν έχουμε απώλεια μάζας

 ότι η αντίσταση του αέρα θεωρείται αμελητέα για όλα τα σώματα Δίνονται:

- η επιτάχυνση της βαρύτητας g = 10 m/s²
- $\eta \mu \frac{\pi}{6} = \frac{1}{2}$, $\eta \mu \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\eta \mu \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

<u>ΘΕΜΑ Δ</u>


Ομογενής, άκαμπτη και μικρού πάχους σανίδα AB μάζας M = 2kg και μήκους l = 4m ισορροπεί σε πλάγια θέση με τη βοήθεια υποστηρίγματος, το οποίο έχουμε στερεώσει σε λείο οριζόντιο δάπεδο. Η σανίδα ακουμπά με το άκρο της A στο λείο δάπεδο σχηματίζοντας γωνία φ = 30° με αυτό.

Η σανίδα συνδέεται με την κορυφή του υποστηρίγματος με άρθρωση σε σημείο της Γ, το οποίο απέχει από το άκρο της Β απόσταση (BΓ) = 1,5m. Η σανίδα μπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που διέρχεται από το σημείο Γ (κάθετος στο επίπεδο του σχήματος).

Ομογενής κύλινδρος μάζας $M_K = 2 \text{ kg}$ και ακτίνας R_K βρίσκεται σε επαφή με τη σανίδα στο σημείο Δ, το οποίο απέχει από το Γ απόσταση (ΓΔ) = 0,2 m. Στο μέσο της επιφάνειας του κυλίνδρου, που φέρει ένα λεπτό αυλάκι, έχουμε τυλίξει πολλές φορές λεπτό, αβαρές και μη εκτατό νήμα, στο άλλο άκρο του οποίου έχουμε δέσει σώμα Σ μικρών διαστάσεων μάζας $M_{\Sigma} = 2 \text{ kg}$.

ΤΕΛΟΣ 6ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Σχήμα 7

Το νήμα περνάει από το αυλάκι ομογενούς τροχαλίας μάζας M_T = 2 kg και ακτίνας R_T, την οποία έχουμε στερεώσει σε ακλόνητο σημείο. Η τροχαλία μπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που διέρχεται από το κέντρο μάζας της και είναι κάθετος στο επίπεδο της τροχαλίας.

Το τμήμα του νήματος που συνδέει τον κύλινδρο με την τροχαλία έχει διεύθυνση παράλληλη με τη σανίδα.

Αρχικά ασκούμε δύναμη F στο κέντρο μάζας του κυλίνδρου με διεύθυνση παράλληλη προς την διεύθυνση ΑΒ, ώστε το σύστημα κύλινδρος-τροχαλία-σώμα να ισορροπεί, όπως φαίνεται στο **Σχήμα 7**.

Δ1. Να υπολογίσετε το μέτρο της δύναμης F.

Μονάδες 4

Τη χρονική στιγμή t = 0 καταργούμε ακαριαία τη δύναμη και το σώμα Σ αρχίζει να κατέρχεται κατακόρυφα, ενώ ο κύλινδρος αρχίζει να ανέρχεται στη σανίδα εκτελώντας κύλιση χωρίς ολίσθηση και το νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας.

Δ2. Να αποδείξετε ότι το μέτρο της επιτάχυνσης με την οποία κατέρχεται το σώμα Σ είναι ίσο με 4 m / s² και να υπολογίσετε το μέτρο της επιτάχυνσης του κέντρου μάζας του κυλίνδρου.

Μονάδες 8

Τη χρονική στιγμή $t_1 = 0,5$ s κόβουμε ακαριαία το νήμα στο σημείο που εφάπτεται με τον κύλινδρο και στο σημείο πρόσδεσης με το σώμα Σ. Μετά το κόψιμο του νήματος, αυτό δεν εμποδίζει την κίνηση του κυλίνδρου και του σώματος. Ο κύλινδρος συνεχίζει την κίνησή του εκτελώντας κύλιση χωρίς ολίσθηση.

Δ3. Να υπολογίσετε τη χρονική στιγμή t₂ στην οποία ο κύλινδρος σταματά στιγμιαία να κινείται πάνω στη σανίδα.

Μονάδες 6

ΤΕΛΟΣ 7ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΑΡΧΗ 8ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Δ4. Να υπολογίσετε το συνολικό διάστημα που διάνυσε ο κύλινδρος από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t₂.

Μονάδες 3

Δ5. Να δείξετε ότι κατά τη διάρκεια της ανόδου του κυλίνδρου πάνω στη σανίδα, από τη χρονική στιγμή t = 0 έως τη χρονική στιγμή t₂, που ο κύλινδρος σταματά στιγμιαία, η σανίδα δεν ανατρέπεται.

Μονάδες 4

Δίνονται:

- ηµφ = 0,5
- η επιτάχυνση της βαρύτητας g = 10 m/s²
- η ροπή αδράνειας ομογενούς κυλίνδρου ως προς άξονα που διέρχεται από το κέντρο μάζας του είναι ίση με I_{cm(κυλίνδρου)} = ¹/₂M_κR_κ²
- η ροπή αδράνειας της ομογενούς τροχαλίας ως προς άξονα που διέρχεται
 1

από το κέντρο μάζας της είναι ίση με $I_{cm(τροχαλίας)} = \frac{1}{2}M_TR_T^2$

- ο άξονας περιστροφής του ομογενούς κυλίνδρου παραμένει συνεχώς οριζόντιος σε όλη τη διάρκεια της κίνησής του
- η αντίσταση του αέρα θεωρείται αμελητέα για όλα τα σώματα
- ο χαρακτηρισμός λεπτό νήμα αφορά νήμα αμελητέου πάχους.

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Για τα σχήματα μπορεί να χρησιμοποιηθεί και μολύβι.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- **6.** Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΤΕΛΟΣ 8ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ