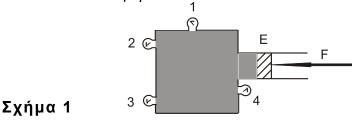
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Στις ερωτήσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει σωστά την ημιτελή πρόταση.

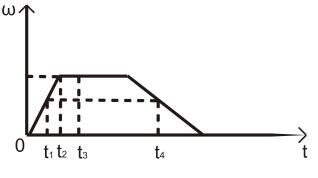

- Α1. Σε μία φθίνουσα ταλάντωση στην οποία το πλάτος μειώνεται εκθετικά με το χρόνο
 - α) η περίοδος δεν διατηρείται για ορισμένη τιμή της σταθεράς
 απόσβεσης b
 - β) όταν η σταθερά απόσβεσης b μεγαλώνει, το πλάτος της ταλάντωσης μειώνεται πιο γρήγορα
 - γ) η κίνηση μένει περιοδική για οποιαδήποτε τιμή της σταθεράς απόσβεσης
 - δ) η σταθερά απόσβεσης b εξαρτάται μόνο από το σχήμα και τον όγκο του σώματος που ταλαντώνεται.

Μονάδες 5

- Α2. Όταν ένα κύμα αλλάζει μέσο διάδοσης, αλλάζουν
 - α) η ταχύτητα διάδοσης του κύματος και η συχνότητά του
 - β) το μήκος κύματος και η συχνότητά του
 - γ) το μήκος κύματος και η ταχύτητα διάδοσής του
 - δ) η συχνότητα και το πλάτος του κύματος.

Μονάδες 5

A3. Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F.


Όλα τα μανόμετρα 1, 2, 3, 4 δείχνουν πάντα

- α) την ίδια πίεση, όταν το δοχείο είναι εντός του πεδίου βαρύτητας
- β) την ίδια πίεση, όταν το δοχείο βρίσκεται εκτός πεδίου βαρύτητας
- γ) διαφορετική πίεση, αν το δοχείο βρίσκεται εκτός πεδίου βαρύτητας
- δ) την ίδια πίεση, ανεξάρτητα από το αν το δοχείο είναι εντός ή εκτός του πεδίου βαρύτητας.

Μονάδες 5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

Α4. Ένας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιμή της γωνιακής ταχύτητας του δίσκου σε συνάρτηση με τον χρόνο παριστάνεται στο διάγραμμα του σχήματος 2.

Σχήμα 2

Ποια από τις παρακάτω προτάσεις είναι η σωστή;

- α) Το μέτρο της γωνιακής επιτάχυνσης αυξάνεται στο χρονικό διάστημα από t₁ έως t₂.
- β) Το μέτρο της γωνιακής επιτάχυνσης τη χρονική στιγμή t₁ είναι μικρότερο από το μέτρο της γωνιακής επιτάχυνσης τη χρονική στιγμή t₄.
- γ) Τη χρονική στιγμή t₃ η γωνιακή επιτάχυνση είναι θετική.
- δ) Το διάνυσμα της γωνιακής επιτάχυνσης τη στιγμή t₁ έχει αντίθετη κατεύθυνση από την κατεύθυνση που έχει η γωνιακή επιτάχυνση τη χρονική στιγμή t₄.

Μονάδες 5

- A5. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη.
 - ά) Ένα σύνθετο κύμα μπορούμε να το θεωρήσουμε ως αποτέλεσμα της επαλληλίας ενός αριθμού αρμονικών κυμάτων με επιλεγμένα πλάτη και μήκη κύματος.
 - β) Σε κάθε στάσιμο κύμα μεταφέρεται ενέργεια από ένα σημείο του ελαστικού μέσου σε άλλο.
 - γ) Το φαινόμενο Doppler αξιοποιείται από τους γιατρούς για την παρακολούθηση της ροής του αίματος.
 - δ) Η εξίσωση της συνέχειας στα ρευστά είναι άμεση συνέπεια της αρχής διατήρησης ενέργειας.
 - ε) Σκέδαση ονομάζεται κάθε φαινόμενο του μικρόκοσμου στο οποίο τα «συγκρουόμενα» σωματίδια αλληλεπιδρούν με σχετικά μικρές δυνάμεις για πολύ μικρό χρόνο.

Μονάδες 5

- **B1.** Ένα τρένο κινείται ευθύγραμμα σε οριζόντιο επίπεδο με σταθερή ταχύτητα μέτρου $\frac{U\eta\chi}{10}$, όπου Uηχ είναι η ταχύτητα διάδοσης του ήχου στον αέρα. Το τρένο κατευθύνεται προς τούνελ που βρίσκεται σε κατακόρυφο βράχο. Ο ήχος που εκπέμπεται από τη σειρήνα του τρένου ανακλάται στον κατακόρυφο βράχο. Ένας ακίνητος παρατηρητής που βρίσκεται πάνω στις γραμμές και πίσω από το τρένο ακούει δύο ήχους. Έναν ήχο απευθείας από τη σειρήνα του τρένον κατακόρυφο βράχο, με συχνότητα f₂. Ο λόγος των δύο συχνοτήτων $\frac{f_1}{f_2}$ είναι ίσος με:
 - i. $\frac{11}{9}$ ii. $\frac{10}{11}$ iii. $\frac{9}{11}$

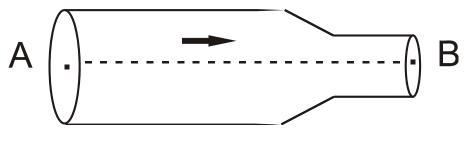
α) Να επιλέξετε τη σωστή απάντηση.

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

Μονάδες 2

- **B2.** Σε χορδή που εκτείνεται κατά μήκος του άξονα x´x, έχει δημιουργηθεί στάσιμο κύμα που προέρχεται από τη συμβολή δύο απλών αρμονικών κυμάτων πλάτους A, μήκους κύματος λ και περιόδου T. Το σημείο O, που βρίσκεται στη θέση x_o = 0, είναι κοιλία και τη χρονική στιγμή t=0 βρίσκεται στη θέση ισορροπίας του, κινούμενο προς τη θετική κατεύθυνση της απομάκρυνσής του. Το μέτρο της μέγιστης ταχύτητας ταλάντωσης ενός σημείου M της χορδής που βρίσκεται στη θέση X_M = $\frac{9\lambda}{8}$, είναι ίσο με:
 - i. $\frac{2\sqrt{2}\pi A}{T}$ ii. $\frac{2\pi A}{T}$ iii. $\frac{4\pi A}{T}$.
 - α) Να επιλέξετε τη σωστή απάντηση.
 - β) Να δικαιολογήσετε την επιλογή σας.


Μονάδες 2

Μονάδες 6

ΤΕΛΟΣ 3ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ - ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ - Γ΄ ΗΜΕΡΗΣΙΩΝ

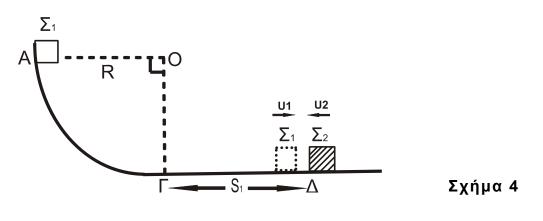
B3. Στον οριζόντιο σωλήνα, του σχήματος 3, ασυμπίεστο ιδανικό ρευστό έχει στρωτή ροή από το σημείο Α προς το σημείο Β.

Σχήμα 3

Η διατομή A_A του σωλήνα στη θέση Α είναι διπλάσια από τη διατομή A_B του σωλήνα στη θέση Β. Η κινητική ενέργεια ανά μονάδα όγκου στο σημείο Α έχει τιμή ίση με Λ . Η διαφορά της πίεσης ανάμεσα στα σημεία Α και Β είναι ίση με:

i. $\frac{3\Lambda}{4}$ ii. 3Λ iii. 2Λ .

α) Να επιλέξετε τη σωστή απάντηση.


β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 2

Μονάδες 7

<u>ΘΕΜΑ Γ</u>

Σώμα Σ₁ μάζας m₁ βρίσκεται στο σημείο Α λείου κατακόρυφου τεταρτοκυκλίου $(\widehat{A\Gamma})$. Η ακτίνα ΟΑ είναι οριζόντια και ίση με R= 5m. Το σώμα αφήνεται να ολισθήσει κατά μήκος του τεταρτοκυκλίου. Φθάνοντας στο σημείο Γ του τεταρτοκυκλίου, το σώμα συνεχίζει την κίνησή του σε οριζόντιο επίπεδο με το οποίο εμφανίζει συντελεστή τριβής μ=0,5. Αφού διανύσει διάστημα S₁=3,6m, συγκρούεται κεντρικά και ελαστικά στο σημείο Δ με σώμα Σ₂ μάζας m₂=3m₁, το οποίο τη στιγμή της κρούσης κινείται αντίθετα ως προς το Σ₁, με ταχύτητα μέτρου U₂=4m/s, όπως φαίνεται στο σχήμα 4.

ΤΕΛΟΣ 4ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ - ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Γ1. Να υπολογίσετε το μέτρο της ταχύτητας του σώματος Σ₁ στο σημείο Γ, όπου η ακτίνα ΟΓ είναι κατακόρυφη.

Μονάδες 5

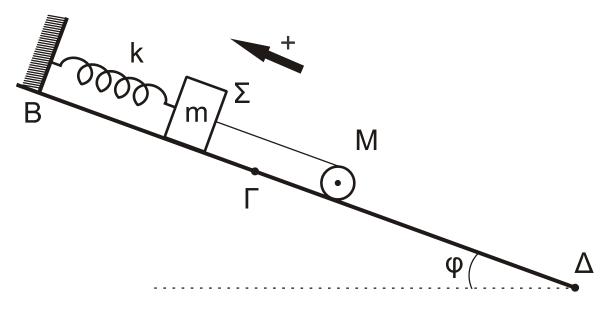
Γ2. Να υπολογίσετε τα μέτρα των ταχυτήτων των σωμάτων Σ₁ και Σ₂ αμέσως μετά την κρούση.

Μονάδες 8

Γ3. Δίνεται η μάζα του σώματος Σ₂, m₂=3kg. Να υπολογίσετε το μέτρο της μεταβολής της ορμής του σώματος Σ₂ κατά την κρούση (μονάδες 3) και να προσδιορίσετε την κατεύθυνσή της (μονάδες 2).

Μονάδες 5

Γ4. Να υπολογίσετε το ποσοστό της μεταβολής της κινητικής ενέργειας του σώματος Σ₁ κατά την κρούση.


Μονάδες 7

Δίνεται: η επιτάχυνση της βαρύτητας g=10m/s². Θεωρήστε ότι η χρονική διάρκεια της κρούσης είναι αμελητέα.

ΘΕΜΑ Δ

Σώμα Σ, μάζας m = 1 kg, είναι δεμένο στο κάτω άκρο ιδανικού ελατηρίου σταθεράς k = 100 N/m. Το πάνω άκρο του ελατηρίου είναι στερεωμένο σε ακλόνητο σημείο στην κορυφή κεκλιμένου επιπέδου, γωνίας κλίσης φ = 30⁰. Το τμήμα ΒΓ του κεκλιμένου επιπέδου είναι λείο.

Ομογενής κύλινδρος μάζας M = 2 kg και ακτίνας R = 0,1 m συνδέεται με το σώμα Σ με τη βοήθεια αβαρούς νήματος που δεν επιμηκύνεται. Ο άξονας του κυλίνδρου είναι οριζόντιος. Το νήμα και ο άξονας του ελατηρίου βρίσκονται στην ίδια ευθεία, που είναι παράλληλη στο κεκλιμένο επίπεδο. Το σύστημα των σωμάτων ισορροπεί όπως φαίνεται στο σχήμα 5.

Σχήμα 5

ΤΕΛΟΣ 5ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ - ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Δ1. Να υπολογίσετε το μέτρο της τάσης του νήματος (μονάδες 3) και την επιμήκυνση του ελατηρίου (μονάδες 2).

Μονάδες 5

Τη χρονική στιγμή t = 0 κόβεται το νήμα. Το σώμα Σ αρχίζει να εκτελεί απλή αρμονική ταλάντωση και ο κύλινδρος αρχίζει να κυλίεται χωρίς ολίσθηση.

Δ2. Να γράψετε την εξίσωση της δύναμης επαναφοράς για το σώμα Σ σε συνάρτηση με το χρόνο, θεωρώντας ως θετική φορά την προς τα πάνω, όπως φαίνεται στο σχήμα 5.

Μονάδες 7

Δ3. Να υπολογίσετε το μέτρο της στροφορμής του κυλίνδρου, όταν θα έχει διαγράψει Ν = ¹²/_Π περιστροφές κατά την κίνηση του στο κεκλιμένο επίπεδο.

Μονάδες 7

Δ4. Να υπολογίσετε το ρυθμό μεταβολής της κινητικής ενέργειας του κυλίνδρου, κατά την κίνηση του στο κεκλιμένο επίπεδο, τη χρονική στιγμή t = 3 s.

Μονάδες 6

Δίνονται:

- η επιτάχυνση της βαρύτητας g = 10 m/s².
- η ροπή αδράνειας ομογενούς κυλίνδρου ως προς τον άξονά του
 1 μρ2

$$I_{CM} = \frac{1}{2}MR^2.$$

• $\eta \mu 30^{\circ} = \frac{1}{2}$.

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρείς (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 6. Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΤΕΛΟΣ 6ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ